5.1 EXAM QUESTIONS MS

(a) $1s^2 2s^2 2p^6 3s^2 3p^6$ 1. 1 (b) $S^{-}(g)$ 1 (c) The negative S⁻ ion 1 repels the electron being added 1 Enthalpy of atomisation of sulphur (d) (i) (ii) Second ionisation enthalpy of calcium 1 (iii) Second electron affinity of sulphur 1 Electron more strongly attracted (e) nearer to the nucleus or attracted by Ca⁺ ion 1 (f) Correct cycle e.g. + 178 + 279 + 590 + 1145 - 200 + E - 3013 + 482 = 01 1 Allow one mark for -539 [11] 2. ΔH_1 formation (1) (a) ΔH_2 atomisation / sublimation (of Cs <u>not</u> Cl) (1) ΔH_5 electron affinity (of Cl) (1) 3 $-433 = 79 + 376 + 121 - 364 + \Delta H_6 (1)$ (b)

correct reference to shielding (1)

both marks for correct answer alone allow 1 mark for +645 or 645

 $\Delta H_6 = -645 \, (\text{kJ mol}^{-1}) \, (\mathbf{1})$

less powerful attraction (of nucleus) for (outer) e⁻ in Cs (1)

[8]

2

3.	(a)	(i)	diagram shows in top box $Rb^+(g) + e^- + I(g) / e^-$ must be there (1)		
			diagram shows in lower box $Rb(\underline{s}) + \frac{1}{2}I_2(\underline{s})$ (1)	2	
		(ii)	ΔH_1 = electron affinity (of iodine)/allow correct symbols including I_2 , Γ , (1)		
			$\Delta H_2 = \text{lattice enthalpy / energy (of RbI)}$ (1)	2	
		(iii)	$\Delta H_1 = -(+402) - (+107) - (+85.8) + (-328) - (-609)$ (1)		
			$=-314 \text{ (kJ mol}^{-1}) \text{ (1)}$	2	
			give 1 mark for +313.8 or +314 assume + if no sign given significant figure penalty for 310		
			significant rigure penalty for 510		[6]
4.		(i)	A is (enthalpy change) of formation(1)		
			B is lattice enthalpy (1)	2	
		(ii)	negative sign (only if a calculation) (1)		
			883 kJ mol ⁻¹ (1)		
			(only give both marks if working and answer correct)		
			hydration / solvation enthalpies (of Li^+ and Cl^-) (1)	3	[5]
5.	(a)	Parti	cles are in maximum state of order (or perfect order or completely ordered or perfect crystal or minimum disorder or no disorder)	1	
			(entropy is zero at 0 k by definition)		
	(b)	(Ice)	melts (or freezes or changes from solid to liquid or from liquid to solid)	1	
	(c)		ease in disorder er (at T_2)	1	
			nd mark only given if first mark has been awarded	1	

```
(d)
                Moles of water = 1.53/18 (= 0.085)
                                                                                                                 1
       (i)
                Heat change per mole = 3.49/0.085 = 41.1 \text{ (kJ mol}^{-1}\text{)}
                                                                                                                 1
                        (allow 41 to 41.1, two sig. figs.)
                        (penalise -41 (negative value), also penalise wrong units but
                        allow kJ only)
        (ii)
                \Delta G = \Delta H - T \Delta S
                                                                                                                 1
               \Delta H = T\Delta S \text{ or } \Delta S = \Delta H/T
        (iii)
                                                                                                                 1
                        (penalise if contradiction)
                \Delta S = 41.1/373 = 0.110 \text{ kJ K}^{-1} \text{ (mol}^{-1}\text{) (or } 110 \text{ (J K}^{-1} \text{ (mol}^{-1}\text{))}
                                                                                                                 1
                        (allow 2 sig. figs.)
                        (if use value given of 45, answer is 0.12 (or 120 to 121)
                        (if \Delta H is negative in (d) (i), allow negative answer)
                        (if \Delta H is negative in (d) (i), allow positive answer)
                        (if \Delta H is positive in (d) (i), penalise negative answer)
                Correct units as above (mol<sup>-1</sup> not essential)
                                                                                                                 1
                                                                                                                             [10]
```

6. (a) (i)

ONLY consider species involved in the step marked

(ii) Cycling clockwise about (*)

CE if step missing

$$\begin{split} \Delta H_a Ba + 1^{st} \; IEBa + 2^{nd} \; IE \; Ba + 2\Delta H_a Cl + 2EACl + LE - \Delta H_f BaCl_2 &= 0 \; \textbf{(1)} \\ +180 + 503 + 965 + 2 \times 122 + 2EA - 2056 + 859 &= 0 \; \textbf{(1)} \\ EA &= -695/2 &= - \; (347 \; to \; 348) \; \textbf{(1)} \\ Ignore \; units \\ Calculation -1 \; for \; each \; error \\ Mark \; conseq. \\ Notes: \; -695 \; scores \; \textbf{(2)} \\ + \; (347 \; to \; 348) \; scores \; \textbf{(2)} \\ - \; (286 \; to \; 287) \; scores \; \textbf{(2)} \\ + \; (286 \; to \; 287) \; scores \; \textbf{(1)} \\ -573 \; scores \; \textbf{(1)} \\ +573 \; scores \; \textbf{(0)} \end{split}$$

(b)
$$\Delta S = \Sigma S$$
 products $-\Sigma S$ reactants
$$= (63 + 223) - 124 = 162 \text{ (1)}$$

$$\Delta G = \Delta H - T\Delta S \quad \text{or} \quad \Delta H = T\Delta S \quad \text{or} \quad T = \Delta H/\Delta S \text{ (1)}$$

$$or \ used \ correctly$$

$$\Delta H = 859 \times 10^3 \text{ (1)} = T \times 162$$

$$T = (5 \ 300 \ \text{to} \ 5304) \ \text{K} \text{ (1)}$$

$$Penalise \ if \ units \ ^{\circ}C$$

$$-1 \ for \ each \ error + mark \ conseq.$$

[13]

7. (a) (i) Standard enthalpy change: $\Delta H_R = \sum \Delta H_f$ products $-\sum \Delta H_f$ reactants (1)

 $\Delta H_R = (-804 - 394) - (-940)$ (1) **N.B: If answer wrong**

statement worth 2

= -258 (kJ mol⁻¹; ignore units completely) (1)

Allow +258 (2) marks

Standard entropy change: $\Sigma\Delta$ S products – $\Sigma\Delta$ S reactants (1) Δ S = (252 + 214) – (49.9 + 5.7 + [2 × 223]) (1) N.B: If answer wrong statement worth 2

= -35.6 (kJ mol⁻¹; ignore units completely) (1) Allow +35.6 (2) marks Mark -36 AE minus one Allow max one for +187

(ii) $T = \frac{\Delta H}{\Delta S}$ or $T = \frac{\Delta H \text{ value from above}}{\Delta S \text{ value from above}}$ (1)

Penalise wrong sign

$$T = \frac{-258 \times 1000}{-35.6} = 7245 \text{ to } 7250 \text{ (1)}$$

Ignore letter after value Ignore \geq even if wrong way around Mark answer conseq to ΔH and ΔS values from above If negative temperature given max 2* If °C used incorrectly max 2* * But only penalise one of these errors

9

[9]

8. (a) (i) Standard enthalpy change: $\Delta H_R = \Delta \Sigma H_f(\text{products}) - \Delta \Sigma H_f(\text{reactants})$ (1) or cycle $\Delta H_R = ([2 \times 0] + [3 \times -393.5]) - (-824.2 + [3 \times -110.5])$ (1) = $-24.8 \text{ (kJ mol}^{-1}) (1)$ Allow + 24.8 max one Standard entropy change: $\Delta S = \Sigma S(products) - \Sigma S(reactants)$ (1) $\Delta S = ([2 \times 27.3] + [3 \times 213.6]) - (87.4 + [3 \times 197.6])$ (1) = (54.6 + 640.8) - (87.4 + 592.8) (1) = $15.2 (JK^{-1}mol^{-1}) (1)$ Allow -15.2 max one $\Delta G = \Delta H - T\Delta S$ (1) (ii) ΔH negative and -T ΔS is negative (or ΔS positive or or correct calc) (1) Hence ΔG is always negative (or feasible when $\Delta G \leq 0$) (1) $\Delta G = O = \Delta H - T\Delta S$ Hence $\Delta H = T\Delta S$ (1) $T = \Delta H / \Delta S = 492.7 \times 1000 / 542.6$ (1) = 908 K (1)penalise missing 1000 by one mark 3 (c) ΔG (b) = ΔG (a) $(492.7 \times 10^3 - T \times 542.6) = (-24.8 \times 10^3 - T \times 15.2)$ (1) $517.5 \times 10^3 = 527.4 \text{ T (1)}$ T = 981.2 K(1)Allow 980 - 982 Penalise missing 1000 by one mark 3 9. $\Delta Ha = \sum \Delta H_f$ products $-\sum \Delta H_f$ reactants or = $\Delta H_f CO_2 - (\Delta H_f CH_4 + 2 \Delta H_f H_2 O)$ (1) $=-393.5 + (74.8 + [2 \times 241.8])$ (1) $= +164.9 \text{ kJ mol}^{-1} (1)$ 3 The number of moles of gas increases from 3 to 5 (1) (b) (i) More moles gas gives more disorder (1) = $\sum S$ prducts – $\sum S$ reactants (1) (ii) ΔS

 $= (213.6 + [4 \times 130.6]) - (186.2 + [2 \times 188.7])$ (1)

 $=+172.4 \text{ JK}^{-1} \text{ mol}^{-1} (1)$

5

[15]

(c) (i)
$$\Delta G = \Delta H - T\Delta S \text{ or } \Delta H = T\Delta S \text{ (1)}$$

 $T = 164.9 \times 1000/172.4 \text{ (1)}$
 $= 956.5 \text{ K (1)}$

Marked consequentially

Above this temperature (1) (ii)

this reaction is feasible or spontaneous (1)

[13]

5

4

10. (a)
$$\Delta H^{\bullet}$$
 $\Delta H^{\bullet} = \Sigma \Delta H^{\bullet}_{\mathbf{f}}$ (products) $-\Sigma \Delta H^{\bullet}_{\mathbf{f}}$ (reactants) (1)
$$= -201 + 110$$
$$= -91 \text{ kJmol}^{-1} \text{ (1)}$$

$$\Delta S^{\bullet}$$
 $\Delta S^{\bullet} = \Sigma S^{\bullet}$ (products) $-\Sigma S^{\bullet}$ (reactants) (1)
= $+240 - 2 \times 131 - 198$
= $-220 \text{ JK}^{-1} \text{ mol}^{-1}$ (1)

Feasible reaction One for which $\Delta G \leq O$ (1) (b)

> Temperature $\Delta G = \Delta H - T\Delta S$ (1) For $\Delta G = O$, $T = \Delta H/\Delta S = -91 \times 1000/(-220)$

3

$$=414 \text{ K}$$
 (1) 3 [7]

11. (a)
$$\Delta H^{\Theta} = \Sigma \Delta H^{\Theta}_{\mathbf{f}}$$
 (products) - $\Sigma \Delta H^{\Theta}_{\mathbf{f}}$ (reactants) (1)
= $2 \times (-396) - 2 \times (-297)$
= -198 kJ mol^{-1} (1)

$$\Delta S^{\bullet} = \Sigma S^{\bullet} \text{ (products)} - \Sigma S^{\bullet} \text{ (reactants)} \quad \textbf{(1)}$$
$$= 2 \times (257) - 204 - 2 \times (248)$$
$$= -186 \text{ JK}^{-1} \text{ mol}^{-1} \quad \textbf{(1)}$$

$$\Delta G^{\bullet} = \Delta H^{\bullet} - T\Delta S^{\bullet}$$
 (1)
= -198 - 298 (-186/1000) (1)
= -143 kJ mol⁻¹ (1)

7

3

(b) One for which $\Delta G \leq O$ (1)

$$T = \frac{\Delta H}{\Delta S} \text{ when } \Delta G = O \text{ (1)}$$

$$=\frac{-198\times1000}{-186}=1100K$$
 (1)

[10]

12. (i) fewer moles of gas (1)

more 'order' in system (1) dependent on idea of fewer moles for first mark

2

(ii) $25 \, ^{\circ}\text{C} = 298 \, \text{K} \, (1)$

$$\Delta S = \frac{-188}{1000}$$
 or $(\Delta H \times 1000)$ (1)

mark is for ensuring ΔH or ΔS are both expressed in terms of J or kJ

$$\Delta G = -196 - 298(-188 \times 10^{-3})$$

= -140 kJ mol⁻¹ or -139976 J mol⁻¹ (1)

ignore sig. figs

sign and unit must be correct in final answer

$$\Delta G$$
 –ve : reaction feasible (1)

4

[6]

13. (a) (i) <u>Steps</u>

Sublimation/atomisation enthalpy or

$$\Delta H_{\text{fus}} + \Delta H_{\text{vap}} \operatorname{Ca}(s) \rightarrow \operatorname{Ca}(g)(1)$$

First ionisation enthalpy of calcium $Ca(g) \rightarrow Ca^{+}(g) + e^{-}$ (1)

Second ionisation enthalpy of calcium $Ca^{+}(g) \rightarrow Ca^{2+}(g) + e^{-}(1)$

Dissociation enthalpy/bond energy/ $2 \times \Delta H_a$ chlorine

$$Cl_2(g) \rightarrow 2Cl(g)$$
 (1)

 $2 \times \text{First electron affinity of chlorine } 2\text{Cl}(g) + 2e^- \rightarrow 2\text{Cl}^-(g)$ (1)

Lattice dissociation (or formation) enthalpy

$$CaCl_2(s) \to Ca^{2+}(g) + 2Cl^{-}(g)$$
 (1)

Enthalpy of formation of calcium chloride

$$Ca(s) + Cl_2(g) \rightarrow CaCl_2(g)$$
 (1)

(ii) 2nd IE needed when CaCl₂ formed or only 1st IE for CaCl (1) BE of Cl₂ needed when CaCl₂ formed but BE/2 for CaCl (or equivalent) (1)

 $2 \times$ electron affinity when CaCl2 formed but $1 \times$ EA for CaCl (1)

LE of CaCl₂ greater (or different) than LE CaCl (1)

 $Ca^{2+}(g) + 2Cl^{-}(g)$ $CaCl_{2}(s)$ $Ca^{2+}(aq) + 2Cl^{-}(g)$ $Ca^{2+}(aq) + 2Cl^{-}(aq)$

+LE + $(\Delta H_{\text{hyd}} \text{Ca}^{2+})$ + $2(\Delta H_{\text{hyd}} \text{Cl}^{-})$ - $\Delta H_{\text{soln}} \text{CaCl}_2$ = CaCl_2 = 0 or correct cycle (1)

 $\Delta H_{\rm soln} \, \text{CaCl2} = 2255 - 1650 - 768 \, \, (1)$

$$=-163 \text{ kJ mol}^{-1}$$
 (1)

(ii) Marked consequentially to answer in (c)(i)

Solubility decreases (1)

Enthalpy of solution negative or exothermic (1)

Equilibrium displaced as predicted by Le Chatelier (1)

3

3

7

4

(c) (i)
$$\Delta H_{\mathbf{c}}^{\mathbf{C}} (CH_2)_4 = 4\Delta H_{\mathbf{f}}^{\mathbf{C}} CO_2 + 4\Delta H_{\mathbf{f}}^{\mathbf{C}} H_2O - \Delta H_{\mathbf{f}}^{\mathbf{C}} (CH_2)_4$$
 (1)
 $-2558 = (4 \times -393.5) + (4 \times -245.1) - \Delta H_{\mathbf{f}}^{\mathbf{C}} (CH_2)_4$ (1)
 $\Delta H_{\mathbf{f}}^{\mathbf{C}} (CH_2)_4 = +3.6 \text{ kJ mol}^{-1}$ (1)

(ii) Enthalpy put in to break bonds

$$4 \times C - C = 4 \times 347$$
 (1) = 1388
 $8 \times C - H = 8 \times 413$ (1) = 3304
 $6 \times O = O = 6 \times 498$ (1) = 2988
Total = 7680

Enthalpy given out when bonds made

$$8 \times C = O = 8 \times -805$$
 (1) = -6440
 $8 \times O - H = 8 \times -464$ (1) = -3712
Total = -10152

Enthalpy change = Enthalpy in – enthalpy out
=
$$7680 - 10152$$
 (1)
= $-2472 \text{ kJ mol}^{-1}$ (1)

marked consequentially

Explanation

Mean bond enthalpies used or bond enthalpies depend on environment (1)

Cyclobutane less stable than suggested by mean bond enthalpies (1)

Cyclobutane a strained structure or bond angles 90° (1)

10

Stability of cyclobutane marked consequentially.

[30]

$$0 = -\Delta H_{\mathbf{f}}^{\mathbf{G}} + \Delta H_{\mathbf{Sub}}^{\mathbf{G}} + \Delta H_{\mathbf{G}}^{\mathbf{G}} + \Delta H_{\mathbf{f}}^{\mathbf{G}} + \Delta H_{\mathbf{f}}^{\mathbf{G}}$$

$$\Delta H_{\mathbf{f}}^{\mathbf{G}} = \Delta H_{\mathbf{Sub}}^{\mathbf{G}} + \Delta H_{\mathbf{G}}^{\mathbf{G}} + \Delta H_{\mathbf{f}}^{\mathbf{G}} + \Delta H_{\mathbf{G}}^{\mathbf{G}} + \Delta H_{\mathbf{f}}^{\mathbf{G}}$$

$$\Delta H_{\mathbf{f}}^{\mathbf{G}} = \Delta H_{\mathbf{G}}^{\mathbf{G}} + \Delta H_{\mathbf{G}}^{\mathbf{G$$

[10]

(b)

Notes:- Ignore electrons in cycle

Penalise missing labels by max 2

Penalise missing state symbols in 'active step' by max 2

Penalise incorrect chemistry every time

Allow steps written horizontally

Calculation:

$$\Delta H_a \mathrm{Mg} + 1^{\mathrm{st}} \mathrm{\,IE\,Mg} + 2^{\mathrm{nd}} \mathrm{\,IE\,Mg} + \Delta H_a \mathrm{\,O} + 1^{\mathrm{st}} \mathrm{\,EA\,O} + 2^{\mathrm{nd}} \mathrm{\,EA\,O} + \mathrm{LE\,Form\,-MgO} \, \Delta H_f \mathrm{MgO} = 0$$
 (1)
Hence; $148 + 738 + 1451 + 249 - 141 + 798 + \mathrm{LE} + 602 = 0$ (1)
(NB This scores 2)
LE formation MgO = -3845 (kJ mol $^{-1}$) (1)
(Allow $+3845$ Max 2)

(c) For the reaction
$$MgCl_2(s) + \frac{1}{2}Cl_2(g) \rightarrow MgCl_3(s)$$

$$\Delta H_r = \Delta H_f MgCl_3 - \Delta H_f MgCl_2$$

$$= +3904 - (-653) = 4557 \text{ (kJ mol}^{-1}) \text{ (1)}$$

$$\Delta S \text{ is negative/ entropy decreases (as order increases) (1)}$$

$$\Delta G = \Delta H - T\Delta S \text{ (1)}$$

$$\Delta G \text{ must (always) be positive (since } \Delta H_r \text{ and } - T\Delta S \text{ are both positive) (1)}$$
Reaction never/not feasible (or equivalent) (1)

$$\Delta S = \Sigma S \text{ products } - \Sigma S \text{ reactants}$$

$$\Delta S = (259 + 187) - (201 + 161)$$

$$\Delta S = 84 \text{ (JK}^{-1} \text{ mol}^{-1}) \text{ (Ignore units)}$$

$$Allow - 84 \text{ to score (I) mark}$$

$$\Delta G = \Delta H - T\Delta S$$

$$= -21.6 - 298 \times 84/1000$$

$$= -46.6 \text{ kJ mol}^{-1} \text{ or } -46.60 \text{ J mol}^{-1}$$

$$Allow (2) \text{ for } -46.6 \text{ without units}$$

$$(Mark \Delta G \text{ consequentially to incorrect } \Delta S)$$

$$(e.g. \Delta S = -84 \text{ gives } \Delta G = +3.4 \text{ kJ mol}^{-1})$$
[6]

17. (a) Reaction 1

$$\Delta H = \Sigma \Delta H_{\rm f} \text{ products} - \Sigma \Delta H_{\rm f} \text{ reactants } (\mathbf{1})$$

$$= (\Delta H_{\rm f} \text{CO}) - (\Delta H_{\rm f} \text{CH}_4 + \Delta H_{\rm f} \text{H}_2 \text{O})$$

$$= (-110.5) - (-74.8 - 241.8) = +206.1 \text{ (kJ mol}^{-1}) \text{ (1)}$$

$$\Delta S = \Sigma S \text{ products} - \Sigma S \text{ reactants } (\mathbf{1})$$

$$= (197.6 + [3 \times 130.6]) - (186.2 + 188.7) = 214.5 \text{ (J K}^{-1} \text{mol}^{-1}) \text{ (1)}$$

$$\Delta G = \Delta H - T \Delta S \text{ (1)}$$

$$0 = +206.1 - T \times 214.5/1000 \text{ (1)}$$

$$T = 206.1 \times 1000/214.5 = 960.8 \text{ (K)} \text{ (1)}$$

Penalise incorrect units in calculation of temperature by 2 marks

Mark T consequentially

Reaction 2

(allow 961)

$$\Delta H = 2\Delta H_f N H_3 = -92.2 \text{ (kJ mol}^{-1}) \text{ (1)}$$

$$\Delta S = (2 \times 192.3) - (191.6 + [3 \times 130.6]) = -198.8 \text{ (J K}^{-1} \text{mol}^{-1}) \text{ (1)}$$

$$\Delta G = 0 = -92.2 + T \times 198.8/1000$$

$$T = 92.2 \times 1000/198.8 = 463.8 \text{ (k)} \text{ (1)}$$

(allow 464)

Mark T consequentially

Note: – Allow first calculation max 7 and second calculation max 3

10

(b) Reaction 1 at higher temperatures

equilibrium yield increased/forward reaction favoured as reaction endothermic (1)

rate of reaction increased (1)

a compromise temperature used based on high cost of high temperature (1)

Reaction 2 at higher temperatures

equilibrium yield reduced/backward reaction favoured as reaction exothermic (1)

rate of reaction increased (1)

a compromise temperature used based on overall yield (1)

Mark consequentially to ΔH values in (a)

max 5

[15]

Calculation of
$$\Delta H$$
; $\Delta H_{\text{reaction}} = \Sigma \Delta H_{\text{Prolucts}} - \Sigma \Delta H_{\text{Reactants}}$ (1)
$$= (2 \times -110.5) - (-3935) = +172.5 \text{ Allow } 172 - 173 \text{ kJ mol}^{-1}$$
 (1)
Calculation of ΔS ; $\Delta S_{\text{reaction}} = \Sigma \Delta S_{\text{Products}} - \Sigma S_{\text{Reactants}}$ (1)
$$= (2 \times 197.6) - (5.7 + 213.6) = 175.9 \text{ J mol}^{-1} \text{ K}^{-1}$$
 (1)
Calculation of T $\Delta G = 172.5 - T \times 175.9/1000 = 0$ (1)
$$T \times 175.9/1000 = 172.5$$

$$T = 172.5 \times 1000/175.9 = 980.7 \text{ K}$$
 (1)
8
(b) Calculation of $\Delta H_{\text{Vaporisation}}$;
$$3675 \text{ J vaporise } 1.50 \text{ g water}$$

$$3675 \times 18/1.50 \text{ vaporise } 1.00 \text{ mole water}$$

$$= 44.1 \text{ kJ mol}^{-1}$$
 (1)
Calculation of ΔS ; $\Delta G = 0 = 44.1 - 373 \times \Delta S/1000 \text{ or } \Delta S = \Delta H/T$ (1)

 $\Delta S = 44.1 \times 1000/373 = 118.2 \text{ J mol}^{-1} \text{ K}^{-1} \text{ (1)}$

Spontaneous when $\Delta G < 0$ or $\Delta G = 0$ (1)

18.

(a)

3

[11]

19. (a)
$$\Delta H^{\mbox{\bf f}} = \Sigma \Delta H^{\mbox{\bf f}}$$
 (products) $-\Delta H^{\mbox{\bf f}}$ (reactants) (1)
$$= (-110.5) - (-271.9) = +161.4 \text{ [Allow } 161 - 161.5] \text{ kJ mol}^{-1} \text{ (1)}$$
 $\Delta S^{\mbox{\bf c}} = \Sigma S^{\mbox{\bf c}}$ (products) $-\Sigma S^{\mbox{\bf c}}$ (reactants) (1)
$$= (27.3 + 197.6) - (58.5 + 5.7) = +160.7$$
[Allow $160.6 - 161$] J mol $^{-1}$ K $^{-1}$ (1)
$$\Delta G = \Delta H - T\Delta S \text{ [Stated or correctly used] (1)}$$

$$\Delta G = +161.4 - 450 \times 160.7/1000 \text{ (1)}$$

$$= +89.1 \text{ [Allow } 88.5 - 89.1] \text{ kJ mol}^{-1}. \text{ (1)}$$

$$\Delta H^{\mbox{\bf f}} = (-393.5) - (-271.9 - 110.5) = -11.1 \text{ kJ mol}^{-1}. \text{ (1)}$$

$$\Delta G^{\mbox{\bf c}} = (213.6 + 27.3) - (58.5 + 197.6) = -15.2 \text{ J mol}^{-1} \text{ K}^{-1}. \text{ (1)}$$

$$\Delta G = -11.1 + 450 \times 15.2/1000 = -4.26 \text{ [Allow} -4.3] \text{ kJ mol}^{-1}. \text{ (1)}$$
(b) Feasible when $\Delta G \leq 0$ or ΔG is negative (1)
Process 1 is more feasible as temperature is increased (1)
Because ΔS is positive or $-T\Delta S$ is negative or $T\Delta S$ is negative (1)
Process 2 is less feasible as temperature is increased (1)
Because ΔS is negative or $-T\Delta S$ is positive or $T\Delta S$ is negative (1)